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Abstract. The fact that two disjoint convex sets can be separated by a plane has a tremendous
impact on optimization theory and its applications. We begin the paper by illustrating this fact in con-
vex and partly convex programming. Then we look beyond convexity and study general nonlinear
programs with twice continuously differentiable functions. Using a parametric extension of the Liu-
Floudas transformation, we show that every such program can be identified as a relatively simple
structurally stable convex model. This means that one can study general nonlinear programs with
twice continuously differentiable functions using only linear programming, convex programming,
and the inter-relationship between the two. In particular, it follows that globally optimal solutions
of such general programs are the limit points of optimal solutions of convex programs.
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1. Introduction

Consider mathematical programs of the form

Minf �z�

�NP� s�t�

f i�z��0� i∈P=	1�����m�
where the functions are defined on the entire space Rn and continuous. We denote
the feasible set by

F =	z �f i�z��0� i∈P�
and consider a point z∗ ∈F . The basic problem in optimization is to find conditions
under which z∗ locally or globally optimizes f on F . The idea is to use properties
of the objective function, constraint functions and the feasible set.
It is important to describe optimal solutions for several reasons, including

(i) verification whether a numerical solution is optimal or ‘close’ to an optimum;
(ii) formulation of numerical methods;
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(iii) economic interpretation of Lagrange multipliers (as economic indicators);
(iv) obtaining additional (often non-intuitive) information about the system;
(v) formulation of ‘duality’ theories.

Optimality of z∗ can be fully described, in many situations, using the basic
geometric fact that two disjoint convex sets can be separated by a plane, called
‘hyperplane’ in Rn, n� 3. This fact is known as the Hyperplane Separation Theo-
rem. Moreover, the slopes of the hyperplane are known as ‘Lagrange multipliers’
and they typically have an economic interpretation. (In linear programming these
are ‘shadow prices’, in convex programming these are ‘values’ of the constraints;
e.g., [14].) By separating the two sets, a saddle point is created in a space of higher
dimension that divides the problem into two parts: an optimization problem in
the decision variables z for some ‘slope’ u and an optimization problem in terms
of the slopes for a fixed optimal solution z∗. This leads to ‘dual’ formulations of
the original problem.
The structure of the paper is as follows: First we will recall some basic results on

saddle-point optimality from convex and partly convex programming. Although
these results are known, they are recalled here to familiarize ourselves with the
notation and the results that will also be used in the general case. We begin
with convex programs in Section 2. The characterization of optimality given here
has been around since at least mid-1970’s, e.g., [2, 14]. ‘Convexity’ is a magic
word in optimization, because local and global optima coincide, so one talks
only about an ‘optimal solution’. Convex programming is the most thoroughly
studied area of nonlinear optimization. Therefore it is important to know if some
properties of convex programs carry on to nonconvex programs. In Section 3
we consider partly convex (PC) programs and characterize their global and local
optima. (PC) are programs that become convex after ‘freezing’ some variables. A
global characterization of optimality is possible for these programs on the ‘region
of cooperation’ of a feasible z∗, e.g., [13]. However, a characterization of local
optimality requires that the feasible set mapping be open, e.g., [11, 14]. Every
‘classical’ result on optimality in (PC) programming, which is either necessary
or sufficient, is a particular case of these results. In Section 4 we introduce one
such result. It is a modification of a well-known necessary conditions for a local
optimum proved in [9] by the Implicit Function Theorem and Farkas’ Lemma. In
Section 5 we look beyond convexity and partial convexity. We study the general
(NP) and characterize its global optimum. This is possible using a parametric
extension of the Liu-Floudas transformation [6]. Using this extension we show
that general programs with twice continuously differentiable functions can be
identified as partly convex programs in a space of twice-higher dimension. Hence
the characterizations of optimality for general programs follow from those given
for usual partly convex programs. In particular, a global optimum of a general
program with twice continuously differentiable functions is obtained as the limit
of optimal solutions of particular convex programs.
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Another important property of the parametric Liu-Floudas transformation is
that it always yields a structurally stable model! Hence this transformation can
be used to stabilize an arbitrary mathematical program. This has been essentially
an open problem even in linear programing; e.g., [14, 15]. It is well known that
augmentations by artificial and slack variables do not make an unstable model
stable. Let us recall that ‘structurally stable’ models are those for which the
feasible set changes ‘continuously’ with data. Under continuity of the constraints
assumption, this is equivalent to saying that the feasible set mapping is open
(or lower semi-continuous); e.g. [11, 12, 14, 15], also [4] and Section 3 below.
The saddle-point optimality conditions given hereby are full characterizations of
optimality. They are not always simple and some extra work may be required to
make them useful.

2. Convex Programming

These are programs (NP) where all functions are assumed to be convex. In order
to characterize optimality of a feasible point z∗, we use the index set

P==	i∈P �z∈F⇒f i�z�=0�

called the minimal index set of active constraints.
The results on optimality (and stability, e.g., [14]) are significantly simplified

if Slater’s condition holds. (It is the condition that there exists a point z′ such that
f i�z′�<0�i∈P. This is true if, and only if, P==�.) The index set P can always
be represented as the union of the two sets: P= and P<=P\P=, i�e��P=P=∪P<.
When the index set P= is known, then one can introduce the set

F==	z∈Rn �f i�z��0�i∈P=��

This is a convex set that contains the feasible set F . Since every constraint
f i, with i∈P=, has the property that f i�z�=0 for every z∈F , one can replace
f i�z��0 by f i�z�=0, i∈P=. Hence the inequalities in the definition of F= can
be replaced by equations, i.e.,

F==	z∈Rn � i∈P=��

If Slater’s condition holds, then F==Rn.

Remark. Situations where Slater’s condition is not satisfied (i.e., when P= 	=�)
include programs with at least one linear equation as a constraint, programs
describing bi-level decision making processes, such as von Stackelberg games
of market economy, lexicographic problems, and some formulations of multi-
objective problems.
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In the formulation of optimality we will use the Lagrangian function

�<�z�u�=f �z�+ ∑
i∈P<

uif
i�z��

Cardinality of the index set P< is denoted by the letter c, i.e., c = card P<, and
the non-negative orthant in Rc is denoted by

Rc
+=	u=�u1�u2�����uc�T ∈Rc �ui�0� i=1�����c��

THEOREM 2.1 (Characterization of optimality in convex programming). Con-
sider the convex program (NP). A point z∗ ∈F= is an optimal solution if, and
only if, there exists u∗ ∈Rc

+ such that

�<�z∗�u���<�z∗�u∗���<�z�u∗�

for every u∈Rc
+ and every z∈F=.

Proof. See, e.g., [14]. The two convex sets to be separated here are

C1=	y �y� �f �z��f 1�z������f c�z��T for at least one z∈F=�

and

C2=	y �y<�f �z∗��0�����0�T �
in Rc+1. (The vector ordering is taken component-wise.) Since F= is a convex
set, so is C1. Convexity of C2 is obvious. In the proof of necessity we note that
C1∩C2=�. (Otherwise z∗ is not optimal.) After separation the leading coefficient
is non-zero by the requirement z∈F= and all slopes are non-negative by the
unboundedness of C2. The sufficiency proof is straightforward.

Remark. The ‘reduced’ Lagrangian �<�x�u� can be replaced by the ‘classical’
Lagrangian

��x�u�=f �x�+∑
i∈P
uif

i�x��

However, the set F= must still be used!

When the constraints satisfy Slater’s condition then one can drop the assump-
tion z∗ ∈F= (i.e., one can replace it by z∗ ∈Rn). This result is equivalent to
the well-known Karush-Kuhn-Tucker theorem. For the differentiable and sub-
differentiable versions of these results see, e.g., [2, 14].

3. Partly Convex Programming

These are programs (NP) in which z=�x��� and we make a distinction between
the ‘state variable’ x and ‘control variable’ (or ‘parameter’) �. The program can
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be rewritten as

Minf �x���

�PC��� s�t�

f i�x����0� i∈P=	1�����m��
Minimization is carried out simultaneously relative to both variables x and �. We
say that the program is partly convex (PC) if the functions f �·���, f i�·���� Rn→
R�i∈P are convex for every �∈Rp.
There are many models that lead to �PC��� and a natural distinction between

x and �. They range from multi-stage heat exchanger problems in chemical engi-
neering and pooling and blending in oil refineries to configuration of clusters of
atoms and molecules and isoperimetry problems in geometry, e.g., [14]. In par-
ticular, finite-dimensional optimal control problems can be formulated as �PC���,
e.g., [3, 9, 10].
Now consider the (PC) program in the form �PC��� and its arbitrary feasible

point z∗=�x∗��∗�, where x∗=xo��∗� is an optimal solution of the convex program
�PC��∗�. We wish to give a condition which is both necessary and sufficient
for its global optimality. Following [13], we state the condition over the ‘region
of cooperation’ of z∗. Let us recall how this region is defined. First, denote the
feasible set of �PC��� by

Z=	�x���∈RN �f i�x����0� i∈P��
For every fixed � denote the feasible set in x by

F���=	x �f i�x����0� i∈P��
Also

P=���=	i∈P �x∈F���⇒f i�x���=0��the ‘minimal index set of active

constraints’

and

P<���=P\P=����

Given a feasible �∗ ∈F =	� �F ��� 	=��, denote
K��∗�=	�∈F �P=���⊂P=��∗��

and, given the feasible point z∗=�x∗��∗�∈Z⊂RN , consider the set

��z∗�=	z=�x��� �x∈F��� for �∈K��∗���



102 S. ZLOBEC

The above objects F����P=����P<����K��∗����z∗� can be considered as point-
to-set mappings, i.e., as F � �→F���, etc. They are important in the study of
‘structural stability’ of parametric models; e.g., [8, 13–15].
The Lagrangian that is used in checking global optimality of z∗=�x∗��∗� is of

the form

L<∗ �z�u�=f �z�+
∑

i∈P<��∗�
uif

i�z��

We study its behaviour on a set of �x��� in RN , determined by �∈K��∗� and the
corresponding x=x���∈F=

∗ ���, i.e., on

	F=
∗ ����K��

∗��

where

F=
∗ ���=	x �f i�x����0�i∈P=��∗���

Cardinality of the set P<��∗� is denoted by the letter c and the non-negative
orthant in Rc by Rc

+.

THEOREM 3.2 (Characterization of a global optimum in partly convex program-
ming; e.g., [13, 14]). Consider the partly convex program (PC,�) and its feasible
point z∗=�x∗��∗�. Suppose that x∗ is an optimal solution of the convex program
(PC,�∗). Then z∗ is globally optimal on its region of cooperation �(z∗� if, and
only if, there exists a vector function U� K��∗�→U���∈Rc

+ such that

L<∗ �z
∗�u��L<∗ �z

∗�U��∗���L<∗ �z�U����

for every z=�x���∈	F=
∗ ����K��

∗�� and u∈Rc
+.

In order to characterize local minima, we need two extra assumptions: unique-
ness of the optimal solution x∗ of the convex program (PC,�∗) and openness of
the feasible set mapping F � �→F���. We recall that the point-to-set mapping
F � Rp→Rn is open at �∗ ∈Rp if, given any point x∗ ∈F��∗� and any sequence
�k→�∗, there is a sequence xk∈F��k� such that xk→x∗.

THEOREM 3.3 (Characterization of a local optimum in partly convex program-
ming; e.g., [13, 14]). Consider the partly convex program (PC,�) and its feasible
point z∗=�x∗��∗�, where x∗ is a unique optimal solution of the convex pro-
gram (PC,�∗). Assume that the feasible set mapping F is open at �∗ relative
to F . Then z∗ is a local minimum if, and only if, there exists a vector function
U� F ∩N��∗�→Rc

+ such that

L<∗ �z
∗�u��L<∗ �z

∗�U��∗���L<∗ �z�U����
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for every z=�x���∈	F=
∗ ����F ∩N��∗�� and u∈Rc

+, where N��∗� is some
neighbourhood of �∗.

Similarly to the convex case, let us observe that the saddle-point inequality in
the above theorems is restricted to x∈F=

∗ ��� and not to x∈Rn.

Remark. A relationship between local optima and the feasible set mapping has
been studied in, e.g., [14]. How to characterize local optima in PC programming
when the feasible set mapping is not open appears to be an open question; see [8].

EXAMPLE 3.4. Consider a discrete optimal control problem, borrowed from [9]
with a slight adjustment (an equation is replaced by inequality):

Min−x�1�2
x2+2�21+3�22�27 x�1� 1��1�3/

√
2� 1��2�2�

We wish to know whether �∗1 =3/
√
2, �∗2 =

√
3 is a locally or globally optimal

control with the corresponding optimal state x∗=3? Since the program is PC, we
can use Theorem 3.3 to check local optimality. According to this theorem, local
optimality is equivalent to the existence of a non-negative function U =U���
such that

−27�Ux2−�1�2x+U�2�21+3�22−27�

for every x and all feasible �’s close to �∗. (This U corresponds to the nonlinear
constraint.) The right-hand side function is quadratic convex in x and its values
are bigger than or equal to −27 if

U =�21�22/4�2�21+3�22��

This establishes local optimality of �∗. Moreover, since K��∗�=	� �2�21+3�22<
26� and this set contains all 1��1�3/

√
2�1��2�2, Theorem 3.2 confirms also

global optimality.

Remark. Possibly a more natural formulation of optimal control (abbreviated:
OC) problems uses the optimal value function f o��� defined as

f o���=minf �x���

s�t�

x∈F����
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In the study of f o��� one is interested in calculating and characterizing its local
and global optima on the set of feasible parameters F =	� �F ��� 	=��, i.e.,

minf o���
�PP� s�t�

�∈F �

The problems (PP) and (PC,�) are closely related in PC programming. In fact,
they are equivalent at the global optimality level, provided that the feasible set of
(PC,�) is compact. In this case, if �∗ globally minimizes f o���, then �∗ and an
optimal solution xo��∗� of the convex program (PC,�) with �=�∗ is a globally
optimal solution of (PC,�) in (x,u) and vice versa. The problem (PP) is a basic
problem in parametric programming. It has been well studied in the context of
convex parametric programming ‘models’. (These are PC programs in which the
variable � is considered as a parameter and allowed to vary.) The optimization
problem is then reduced to optimization of the optimal value function in (PP).
Local and global optimality of the parameter have been characterized for convex
models in many papers, see, e.g., [8, 11, 12, 14].
An advantage of formulating OC problems as (PP) is that the latter may lead to

the discovery of perturbations that cause discontinuities of the feasible set map-
ping, as shown in ‘input optimization’ methods, e.g., [14]. These discontinuities
generally occur even in linear models; e.g., [15]. However, they do not occur,
e.g., if perturbations of � continuously generate a unique feasible point x∈F���,
which happens in many ‘classical’ OC problems ( also in our preceding exam-
ple). This might be the reason why discontinuities of the feasible set mapping are
not usually studied in the classical optimal control. Non-uniqueness of feasible
points typically occurs in control problems with inequality constraints, e.g., [7].

4. Particular Cases in PC Programming

Theorems 3.2 and 3.3 are full characterizations of optimality and hence they
contain many special cases. For example, if � is fixed, they yield Theorem 2.1.
We will now look at a classical result that gives only a necessary condition
for local optimality in NP and OC. This result will be reformulated here for
partly convex programs. Being only a necessary condition for optimality (and
not a characterization) it may pass some non-optimal points as candidates for
optimality. The result is new and it is given here for the sake of comparison with
the saddle-point approach.
Consider the partly convex (PC,�) around a feasible point z∗=�x∗��∗�. Here

are the assumptions:

(A1) This is a new assumption: For every feasible � in a neighbourhood of �∗,
the index set P=��� is constant. If we denote this index by R, and denote
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f i=hi�i∈R, then we know that hi�x��0 can be replaced by hi�x���=
0�i∈R� Now the PC program (PC,�) can be rewritten as

Min
�x���

f �x���

hi�x���=0� i∈R
f j�x����0� j∈Q=P\R�

Note that the inequalities in R are replaced by equations. Further we assume
that R=	1�����n� where n is the dimension of x.

Other assumptions are standard and they are taken from the literature, e.g., [9]:

(A2) All functions f �hi�i∈R�f j�j∈P\R are twice continuously differentiable.
(A3) The n×n matrix evaluated at x∗ and �∗

M=

 (h1/(x1�����(h

n/(x1
���

(h1/(xn�����(h
n/(xn




is non-singular. This assumption guarantees (by the Implicit Function
Theorem) the existence of a continuous differentiable function ) �Rp→Rn

and a ball B around �∗ ∈Rp such that for all �∈B, the solution x to hi�x���=
0�i∈R is given by x=)���. We will now use this function instead of the
equality constraints, i.e., the problem is reduced to

Min
���

*���=f �)������

*j���=f j�)�������0� j∈Q� (4.1)

(A4) The tangent cone to the feasible set of the new problem at �∗ is regular,
i.e.,

T =	e �(f j�x∗��∗�/(� ·e�0�j∈Q�x∗��∗��
where

Q�x∗��∗�=	j∈Q�f j�x∗��∗�=0�j∈Q��
Now denote

vT =(f �x∗��∗�/(x ·M−1�

-T =uT

 (f

n+1/(x
���

(f N /(x


·M−1
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evaluated at x∗ and �∗, and finally

J�x���v�=f �x���−∑
i∈R
vih

i�x���

V �x���-�u�=−∑
j∈Q
ujf

j�x���+∑
i∈R

-ih
i�x���

L�x���v�-�u�=J�x���v�−V �x���-�u��

THEOREM 4.1 (Necessary conditions for local optimality in partly convex pro-
gramming). Consider the partly convex program (PC,�) around a parameter �∗

and a corresponding optimal solution x∗=x0��∗� of the convex program (PC,�∗).
Suppose that the assumptions (A1)–(A4) are satisfied. If �∗ is a locally optimal
parameter then there exists v∈Rn, determined by

(J�x∗��∗�v�/(x=0

and vectors -∈Rn and non-negative u∈Rn
+ such that

(V �x∗��∗�-�u�/(x=0

and

(L�x∗��∗�v�-�u�/(�=0�

Proof. The idea is to work with the problem (4.1) in the variable � while
keeping in mind that hi�)������≡0�i∈ R The latter gives

(h�)��∗���∗�/(�=(h�x∗��∗�/(x ·�()��∗�/(��+(h�x∗��∗�/(�=0�

Note that these are n×p, n×n, n×p and n×p matrices, respectively. (Here
(h�)��∗���∗�/(�= �(hi�)��∗���∗�/(�j�, etc.) Hence

�()��∗�/(��=−M−1 ·�(hi�x∗��∗�/(��� (4.2)

If �∗ is a local minimum then, by regularity of T, for every e∈Rp such that

(*j��∗�/(� ·e�0�j∈Q∗ we must have (*��∗�/(� ·e�0�

Now Farkas’ lemma and chain rule diffferentiations with (4.2) yield relations that
are equivalent to the statement of the theorem. These are known arguments and
the reader is referred to [9, Section 4.2] for details.
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EXAMPLE 4.2. Consider the control problem

Min−x1/�
−x1−�x2+1�0

−x2�0

x1+x2−1�0

−x1�0

−�+1/2�0�

Can �∗=1/2 be a locally optimal control with the corresponding optimal state
x∗=x0��∗�=�1�0�T? Here P=��∗�=	1�2�3�5� and we can choose R=	1�2�.
The assumptions (A1)–(A4) are satisfied with

M=
[
1 0
�∗ 1

]

Q�x∗��∗�=	5��T =R+�v1=−2�v2=1�-1=u1�-2=−1/2-1, and finally u2=4
from (L/(� =0. Hence the necessary condition for local optimality is satisfied.

5. Nonlinear Programming: A Look Beyond Partly Convex Programs

In the study of (PC) programs one uses the tools of convex programming and
point-to-set topology. However, one should keep in mind that these are essentially
nonconvex programs. Their feasible sets may be nonconvex and even disjoint.
Moreover, local and global optima do not generally coincide. In this section we
take a look beyond convex and (PC) programs and study global optimality for
general n-dimensional NP problems. We will show how these problems can be
formulated as particular (PC) programs in 2n+1 dimensions. For this reason, all
the results given above are applicable in the new context. First, let us introduce
the following PC formulation of (NP)

Minf �z�−M�Tz+MzTz
�LF0��1�

f i�z�−M�Tz+MzTz�0� i∈P� z∈C
�z−���1

where M is a positive scalar, C is a nonempty convex compact set, �·� is an
arbitrary norm, and 1�0 is a scalar parameter. Recall that for a special choice of
the norm, say, l1 and l�, the constraint �z−���1 can be replaced by a system
of linear inequalities. Note that for every fixed 1�0 and �, (LF0��1) is a convex
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program for all sufficiently large M>0, provided that f and f i�i∈P are twice
continuously differentiable. This can be verified using the fact that the Hessian
matrices in z, of the objective functions and the constraints, are positive definite
on the compact set C for sufficiently large M>0. Also (LF0��1) is partly convex
in z and � for every 1�0� Being linear in � and convex in z, we can say that
(LF0��1) is a partly linear-convex program. If the vector � and the scalar 1 are
jointly considered as a ‘control’ vector, then (LF0��1) is a convex optimal control
problem in the ‘state’ variable z! Using the terminology from, e.g., [14], (LF0��1)
is a convex model with the parameters � and 1.
The above model is an extension of the program introduced by Liu and Floudas

in [6] from 1=0 to 1�0. These authors have observed that a feasible z∗ of (NP)
is its globally optimal solution if, and only if, the same z∗ and �∗= z∗ is a globally
optimal solution of (LF0�, 0). This is a crucial observation for our study.
Let us first show that the model (LF0��1) is ‘structurally stable’ for feasible

perturbations in (��1) at an optimal �∗= z∗ and 1∗=0. This means that the feasible
set mapping

F � �1���→F�1���=	z �f i�z�−M�Tz+MzT z�0�i∈P�z∈C��z−���1�

is open at 1∗=0 and �∗=z∗ relative to its feasible perturbations.

THEOREM 5.1 (Stability of the Liu-Floudas model). Consider (NP), where all
functions are assumed to be twice continuously differentiable, with a unique
globally optimal solution z∗, and the corresponding (LF; ��1) with M sufficiently
large. Then the feasible set mapping F � �1���→F�1��� is open at 1∗=0 and
�∗=z∗ relative to its feasible perturbations.

Proof. Take the globally optimal solution z∗ of (NP). Then z∗=�∗ and �∗ is
a globally optimal solution of (LF0�, 0). We have to show that, for an arbitrary
feasible sequence (1k��k�→�1∗��∗��1∗=0, there is a sequence zk∈F�1k��k� con-
verging to z∗ ∈F�1∗��∗�. Indeed, for every element in such sequence 	1k��k�,
there exists an zk∈F�1k��k�, by the feasibility assumption. Since the set C is
compact, the sequence 	zk� contains a subsequence converging to some point
w∗ ∈F�1∗��∗�. But the feasible set mapping F � �1���→F�1��� is closed. (This
is a consequence of continuity of the constraint functions.) Therefore w∗ ∈
F�1∗��∗�. Since 1∗=0, this means that w∗=�∗. But we know that z∗=�∗. Hence
w∗=z∗.

Remark. The above result says that (LF; ��1) is a ‘stable’ convex model at
the optimal parameter even if the original (NP) is unstable. The ‘stabilization’
is important because, using this result, one can now study many multi-level
and multi-objective optimization problems; see [1, 2, 4, 14, 15]. The models
describing these problems are typically unstable.
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An illustration of the Liu-Floudas stabilization follows:

EXAMPLE 5.2. Consider

Max
s�t�

z

4z�0� 0�z�1

where 4� 0 is a parameter. One can think of 4 as a small positive error around
4=0. For any 4>0, a unique global solution is zo�4�=0 and the optimal value
is f 0�4�=0. Since

lim
4→0

zo�4�=0 and lim
4→0

f o�4�=0

one might be tempted to conclude that the optimal value is 0 also for 4=0. But
this is not true, because zo�0�=1 and f o�0�=1. We see that every (arbitrarily
small) perturbation of 4 at 4=0 always gives results that are ‘far’ from the
results of the unperturbed program. This kind of instability is not present in the
parametric Liu-Floudas model. This model is here (after specifying M=1)

Max
s�t�

z+�z−z2

4z−�z+z2�0� −1�z−��1� 0�z�1�

Fix 1>0. For every 0<4�1, an optimal solution is zo�4�=1��o�4�=1+4 and
the optimal value is f o�4�=1+4. This time

lim
4→0

zo�4�=1 and lim
4→0

f o�4�=1�

Continuity of the model is preserved. More numerical effort (better approximation
of 4=0) has produced more accurate results and the correct results in the limit.

The main result on optimality follows:

THEOREM 5.3 (Characterization of global optimality for general nonlinear pro-
grams). Consider (NP), where all functions are assumed to be twice continuously
differentiable, its arbitrary feasible point z∗, and the model (LF; ��1). Assume
that (NP) has a unique globally optimal solution. Then z∗ is a globally optimal
solution of (NP), if and only if, for all sufficiently large M, if, and only if, z∗ and
�∗= z∗ is the limit point of optimal solutions zo=zo�1���o=�o�1� of (LF; ��1),
respectively, as 1→0.

Proof. Suppose that z∗ is a unique globally optimal solution of (NP). Consider
a sequence 1>0�1→0. For every 1 of the sequence, there exists an optimal
solution zo=zo�1���o=�o�1� of (LF; ��1). This is true because C is a compact
set and the feasible set of (LF; ��1) is not empty, always containing at least z∗
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and �∗=z∗. As 1→0 the optimal solutions zo�1�→w∗ and �o�1�→w∗ for some
w∗. Since the constraints are continuous, it follows that w∗ and �∗=w∗ are a
feasible point of (LF; ��0). This means that w∗ is a globally optimal solution
of (NP), by the Liu-Floudas result. Since there is only one globally optimal
solution of (NP), by assumption, it follows that w∗=z∗. The sufficiency part of
the proof is straightforward: If z∗ and �∗= z∗ is the limit point of optimal solutions
zo=zo�1���o=�o�1� of (LF; ��1), respectively, as 1→0, then z∗ and �∗=z∗ is a
feasible point of (LF; ��0). But this means that z∗ is a globally optimal solution
of (NP).

Remark. A unique global optimum z∗ of (NP) is the limit point of optimal
solutions zo�1� of the convex programs (LF; �o�1��1�

Minf �z�−M�o�1�T z+MzT z

f i�z�−M�o�1�T z+MzT z�0� i∈P� z∈C
�z−�o�1���1

as 1>0�1→0. Here �o�1� is a globally optimal solution of the convex model

Minf o���

�∈F�1�=	� �F �1��� 	=��
where f o��� is the optimal value function

f o���=f �zo����−M�Tzo���+Mzo���T zo����
The point zo��� is an optimal solution, for fixed � and 1, of the convex program
(LF; ��1�.

EXAMPLE 5.4. Consider the strictly concave program

Minsinz

s�t�

0�z�1�

One can choose M=1, and the (LF; ��1� model is

Minsinz−�Tz+zT z
�LF0��1�

z∈C= �0�1�
�z−���1�
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For the sequence, e.g., 1k=1/k→0 one can choose �o=�o�1k�=1/�2k�→0
and zo=zo�1k�=0. Hence z∗=0 is a global minimum. Note that the sequence of
convex programs to be solved in z is

Minsin z−1/�2k�z+z2
s�t�

0�z�1� �z−1/�2k���1/k� k=1�2����

The formulation (LF; ��1) is more suitable for numerical purpose than (LF; �,
0) since an optimal solution of (NP) is obtained as the solution of a structurally
stable model (without complications illustrated in Example 5.2). In order to find a
global optimum z∗ of a general, possibly nonconvex and unstable, (NP) one first
transforms (NP) into (LF; ��1). For a fixed 1>0 one finds an optimal solution
zo=zo�1� and �o=�o�1� of the corresponding PC program. There are at least
two general and distinct ways how this can be done. One can use a GOP method;
e.g., [5, 6]. These methods are specifically designed to solve PC programs. An
alternative approach is to use a method of input optimization. These methods have
been applied to a variety of convex models in, e.g., [14]. They are parametric
in nature and minimize the optimal value function f o���, using an appropriate
marginal value formula, to find its minimizing point �o�1�. In either case, as 1→
0��o=�o�1�→z∗ and zo=zo�1�→z∗. It is too early to comment on comparison
and numerical efficiency of these approaches. Their testing is a time-consuming
process currently under way. In order to get a full picture we also plan to test
unstable programs. Finding efficient numerical methods for (LF; ��1), 1→0
may be a potentially important problem in numerical optimization. Although we
do not have a computer code at this time, several nontrivial problems have already
been solved using the Liu-Floudas parametric model. For example, the model
has been recently used in [16] to solve a system of 3 nonlinear equations in 3
unknowns. The system was first written as an unconstrained problem and then its
(LF; ��1), 1→0 was solved by input optimization.
If a globally optimal solution is not unique then a characterization of optimality

can be given based on the property that the optimal solutions mapping is closed,
i.e., one uses a weak convergence of the optimal value function. However, it is not
clear how to relax the condition that the functions in (NP) be twice continuously
differentiable so that (LF; ��1) be convex. In particular, for what f �z� is the
function f �z�−M�Tz+MzTz convex over a compact set C for every � and all
sufficiently largeM>0? We know that it is not enough to assume that the function
f �z� is just twice differentiable. Theorems 2.1 and 3.2 have been extended to
abstract settings in [1]. They are applicable to convex OC problems. The Liu-
Floudas parametric model has not yet been formulated in an abstract setting. If
such model existed, it could be used to study nonconvex infinite-dimensional
optimization and OC problems.
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